0%

Welcome

摘要

Our work focuses on tackling the challenging but natural visual recognition task of long-tailed data distribution (i.e., a few classes occupy most of the data, while most classes have rarely few samples). In the literature, class re-balancing strategies (e.g., re-weighting and re-sampling) are the prominent and effective methods proposed to alleviate the extreme imbalance for dealing with long-tailed problems. In this paper , we firstly discover that these rebalancing methods achieving satisfactory recognition accuracy owe to that they could significantly promote the classifier learning of deep networks. However, at the same time, they will unexpectedly damage the representative ability of the learned deep features to some extent. Therefore, we propose a unified Bilateral-Branch Network (BBN) to take care of both representation learning and classifier learning simultaneously, where each branch does perform its own duty separately. In particular , our BBN model is further equipped with a novel cumulative learning strategy, which is designed to first learn the universal patterns and then pay attention to the tail data gradually. Extensive experiments on four benchmark datasets, including the large-scale iNaturalist ones, justify that the proposed BBN can significantly outperform state-of-the-art methods. Furthermore, validation experiments can demonstrate both our preliminary discovery and effectiveness of tailored designs in BBN for long-tailed problems. Our method won the first place in the iNaturalist 2019 large scale species classification competition, and our code is open-source and available at https://github.com/Megvii-Nanjing/BBN.

阅读全文 »

摘要

Recognizing objects from subcategories with very subtle differences remains a challenging task due to the large intra-class and small inter-class variation. Recent work tackles this problem in a weakly-supervised manner: object parts are first detected and the corresponding part-specific features are extracted for fine-grained classification. However, these methods typically treat the part-specific features of each image in isolation while neglecting their relationships between different images. In this paper, we propose Cross-X learning, a simple yet effective approach that exploits the relationships between different images and between different network layers for robust multi-scale feature learning. Our approach involves two novel components: (i) a cross-category cross-semantic regularizer that guides the extracted features to represent semantic parts and, (ii) a cross-layer regularizer that improves the robustness of multi-scale features by matching the prediction distribution across multiple layers. Our approach can be easily trained end-to-end and is scalable to large datasets like NABirds. We empirically analyze the contributions of different components of our approach and demonstrate its robustness, effectiveness and state-of-the-art performance on five benchmark datasets. Code is available at https: //github.com/cswluo/CrossX.

阅读全文 »

摘要

We aim to provide a computationally cheap yet effective approach for fine-grained image classification (FGIC) in this letter. Unlike previous methods that rely on complex part localization modules, our approach learns fine-grained features by enhancing the semantics of sub-features of a global feature. Specifically, we first achieve the sub-feature semantic by arranging feature channels of a CNN into different groups through channel permutation. Meanwhile, to enhance the discriminability of sub-features, the groups are guided to be activated on object parts with strong discriminability by a weighted combination regularization. Our approach is parameter parsimonious and can be easily integrated into the backbone model as a plug-and-play module for end-to-end training with only image-level supervision. Experiments verified the effectiveness of our approach and validated its comparable performance to the state-of-the-artmethods. Code is available at https:// github.com/ cswluo/ SEF

阅读全文 »

摘要

Most object recognition approaches predominantly focus on learning discriminative visual patterns while overlooking the holistic object structure. Though important, structure modeling usually requires significant manual annotations and therefore is labor-intensive. In this paper, we propose to “look into object” (explicitly yet intrinsically model the object structure) through incorporating self-supervisions into the traditional framework. We show the recognition backbone can be substantially enhanced for more robust representation learning, without any cost of extra annotation and inference speed. Specifically, we first propose an object-extent learning module for localizing the object according to the visual patterns shared among the instances in the same category. We then design a spatial context learning module for modeling the internal structures of the object, through predicting the relative positions within the extent. These two modules can be easily plugged into any backbone networks during training and detached at inference time. Extensive experiments show that our look-into-object approach (LIO) achieves large performance gain on a number of benchmarks, including generic object recognition (ImageNet) and fine-grained object recognition tasks (CUB, Cars, Aircraft). We also show that this learning paradigm is highly generalizable to other tasks such as object detection and segmentation (MS COCO). Project page: https://github.com/JDAI-CV/LIO.

阅读全文 »

摘要

Key for solving fine-grained image categorization is finding discriminate and local regions that correspond to subtle visual traits. Great strides have been made, with complex networks designed specifically to learn part-level discriminate feature representations. In this paper, we show it is possible to cultivate subtle details without the need for overly complicated network designs or training mechanisms – a single loss is all it takes. The main trick lies with how we delve into individual feature channels early on, as opposed to the convention of starting from a consolidated feature map. The proposed loss function, termed as mutual-channel loss (MC-Loss), consists of two channel-specific components: a discriminality component and a diversity component. The discriminality component forces all feature channels belonging to the same class to be discriminative, through a novel channel-wise attention mechanism. The diversity component additionally constraints channels so that they become mutually exclusive on spatial-wise. The end result is therefore a set of feature channels that each reflects different locally discriminative regions for a specific class. The MC-Loss can be trained end-to-end, without the need for any bounding-box/part annotations, and yields highly discriminative regions during inference. Experimental results show our MC-Loss when implemented on top of common base networks can achieve state-of-the-art performance on all four fine-grained categorization datasets (CUB-Birds, FGVC-Aircraft, Flowers-102, and Stanford-Cars). Ablative studies further demonstrate the superiority of MC-Loss when compared with other recently proposed general-purpose losses for visual classification, on two different base networks. Code available at https://github.com/dongliangchang/Mutual-Channel-Loss

阅读全文 »

摘要

Data augmentation is usually adopted to increase the amount of training data, prevent overfitting and improve the performance of deep models. However, in practice, random data augmentation, such as random image cropping, is low-efficiencyandmightintroducemanyuncontrolledbackground noises. In this paper, we propose Weakly Supervised Data Augmentation Network (WS-DAN) to explore the potential of data augmentation. Specifically, for each training image, we first generate attention maps to represent the object’s discriminative parts by weakly supervised learning. Next, we augment the image guided by these attention maps, including attention cropping and attention dropping. The proposed WS-DAN improves the classification accuracy in two folds. In the first stage, images can be seen better since more discriminative parts’ features will be extracted. In the second stage, attention regions provide accurate location of object, which ensures our model to look at the object closer and further improve the performance. Comprehensive experiments in common fine-grained visual classification datasets show that our WS-DAN surpasses the state-ofthe-art methods, which demonstrates its effectiveness.

阅读全文 »